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Abstract. In this article, a numerical method is presented for solving non-linear multi-order fractional differ-
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constructed for the product of basis functions. The fractional derivative is considered in the Caputo sense. Using
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literature.

Keywords: Orthonormal Boubaker polynomials, operational matrix, fractional differential equations, conver-

gence analysis, Riemann-Liouville integration, Caputo derivative.

AMS Subject Classification: 34A08, 65L60.

Corresponding author: H. Jafari, Department of Mathematical Sciences, University of South Africa, South

Africa, e-mail: jafari.usern@gmail.com

Received: 14 April 2024; Revised:18 June 2024; Accepted: 7 July 2024; Published: 2 August 2024.

1 Introduction

Fractional calculus (FC) is a field of mathematics that deals with arbitrary order differentiation
and integration (Podlubny, 1998). In recent years FC has more attention due to its wide range
of applications in various scientific and engineering disciplines (Ross, 1977; Jafari et al., 2023;
Ma et al., 2016). Fractional calculus deals analysis of systems with memory and non-local be-
havior, making it a powerful tool in modeling complex phenomena. FC has many applications
in the field like diffusion processes, bio-engineering, control theory, finance, image processing.
The operational matrix method is one of the effective technique for solving fractional differ-
ential equations (FDEs). Operational matrices provide a systematic framework for converting
differential equations into algebraic equations, which can then be solved numerically. In recent
years using different basis functions researchers have developed efficient numerical methods using
operational matrix for solving FDEs. In this article we have developd effective numerical tech-
niques for solving a non-linear multi-order fractional differential equations by using orthonormal
Boubaker basis polynomials. In recent years researchers used different basis functions such as
the Legendre , Berstein , Fermat, Clique, Chebyshev, Jacobi, and cubic B-spline polynomials to
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construct the operational matrices (Sun et al., 2022; Ali, 2014; Youssri, 2017; Ganji et al., 2021,
2019; Li, 2014). Here, we use the orthonormal Boubaker basis functions, which were initially
applied by Boubaker in order to solve the heat equation. These Boubaker polynomials finds
many applications in the literature Kashem et al. (2020); Khoso et al. (2020); Bolandtalat et al.
(2016); Zhao (2016); Bencheikh et al. (2022).

In this paper, we consider the following type of non-linear multi-order FDEs

Dω
xy(x) +

n∑
j=1

aj(x)D
βj
x y(x) +

k∑
i=1

biy
i(x) + g(x) = 0, (1)

ys(0) = 0, s = 0, 1, · · ·n− 1, (2)

where n − 1 < ω ≤ n, the coefficients aj(x) (j = 1, 2, · · ·n) and g(x) are known functions,
0 < β1 < β2 < · · · < βn < ω, and Dω

xy(x) is the Caputo fractional derivative of order ω.

The structure of the article is as follows: A few definitions as well as properties of fractional
calculus were covered in section 2. Function approximation using orthonormal Boubaker poly-
nomials basis is discussed in section 3. The creation of the operational matrix for the product
and fractional integration is covered in section 4. Section 5, is devoted to solving the multi-order
FDE class. A few examples are given in section 6 to demonstrate the reliability and suitability
of the suggested approach. We have concluded the work of this paper in section 7.

2 Preliminaries

In this section, we review some key definitions of fractional calculus, Boubaker polynomials,
which are used throughout the work in this section.

Definition 1. (See Podlubny (1998)) The Riemann-Liouville (R-L) fractional integral of order
ω is defined as

Iωx f(x) =
1

Γ(ω)

∫ x

a
(x− ζ)ω−1f(ζ)dζ, ω ∈ [n− 1, n). (3)

where n ∈ N.

Definition 2. (See Podlubny (1998)) The Caputo fractional derivative of order ω is defined as

Dω
xf(x) = I(n−ω)

x

(
dnf(x)

dxn

)
=

1

Γ(n− ω)

∫ x

a

fn(ζ)dζ

(x− ζ)ω+1−n , (4)

where ω ∈ (n− 1, n). If ω = n, then Dω
xf(x) =

dnf(x)

dxn
.

Definition 3. (see Bolandtalat et al. (2016)) The Boubaker polynomials defined as

Bm(x) =

ζ(m)∑
p=0

[
(m− 4p)

(m− p)

(
p

m− p

)]
· (−1)p · xm−2p, (5)

where ζ(m) = 2m+[(−1)m−1]
4 .

The reduction formula for Boubaker polynomials is given by

Bn(x) = xBn−1(x)−Bn−2(x), for n ≥ 2, (6)

B0(x) = 1, B1(x) = x.
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Definition 4. The orthonormal Boubaker polynomials (Kashem et al., 2020) are defined as
follows:

Bo0(x) = 1,

Bo1(x) =
√

3(−1 + 2x),

Bo2(x) =
√

5(1− 6x+ 6x2),

Bo3(x) =
√

7(−1 + 12x− 30x2 + 20x3).

Analytical form of orthonormal Boubaker polynomial is given by,

Bom(x) =
√

2m+ 1

m∑
r=0

(−1)m+r (m+ r)!xr

(m− r)!(r!)2
, m ∈ N. (7)

Properties of fractional operators

1.

IωxD
ω
xu(x) = u(x)−

n−1∑
r=0

u(r)(0)
xr

r!
.

2.

IωxD
β
xu(x) = Iω−βx u(x)−

n−1∑
r=0

u(r)(0)

Γ(ω − β + r + 1)
(x− a)ω−β+r,

where β ∈ (n− 1, n], n ∈ N.

3.

Iωxβ =
Γ(β + 1)

Γ(β + 1 + ω)
xβ+ω.

3 Function approximation

The function y(x) ∈ L2[0, 1] is approximated using orthonormal Boubaker polynomials as fol-
lows:

y(x) =

m∑
j=0

cjBoj (x) = CTBo(x), (8)

where

Bo(x) = [Bo0(x) Bo1(x) . . . Bom(x)] .

where Boj (x), j = 0, 1, · · ·m are orthonormal Boubaker polynomials and CT = [c0 c1 . . . cm] are
orthonormal Boubaker coefficients and m is any positive integer. The cj is given by,

cj =

∫ 1

0
y(x)Boj (x) dx.

Let us consider, X1(x) be a Taylor’s basis and we represent the Bo(x) in orders of Taylor’s basis
is as follows:

Bo(x) = Z̃X1(x),
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where X1(x) = [1 x x2 · · ·xm]T and coefficient matrix Z̃ is given by

Z̃ =



1 0 0 0 · · · 0

−
√

3 2
√

3 0 0 · · · 0√
5 −6

√
5 6

√
5 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

(−1)m
√

2m+ 1 (−1)m+1
√

2m+ 1(m2 +m) (−1)2m
√

2m+1(2m)!
(m!)2


. (9)

4 Operational matrices for fractional operators

Orthonormality is a crucial factor in solving FDEs through the operational matrix approach.
The operational matrices of fractional operators are obtained in this section.

4.1 Operational matrix of integration

Let us evaluate, R-L fractional integration of Boubaker vector Bo(x), see Bolandtalat et al.
(2016)

IωxBo(x) = LωBo(x), (10)

where, Lω is the (m+ 1)× (m+ 1) operational matrix of fractional integral.
Computation of Lω is as follows:

IωxBo(x) =
1

γ(ω)

∫ x

0
(x− ζ)ω−1Bo(ζ) dζ

=
1

γ(ω)

∫ x

0
(x− ζ)ω−1Z̃X1(ζ) dζ

= Z̃[Iωx 1 Iωx x Iωx x
2 Iωx x

3 · · · Iωx xm]T

= Z̃

[
0!

Γ(ω + 1)
xω

1!

Γ(ω + 2)
xω+1 · · · · · · m!

Γ(ω + 1 +m)
xω+m

]T
= Z̃D̃X2(x),

(11)

where X2(x) = [xω xω+1 xω+2 xω+3 · · · xω+m]T ,

D̃ =



0!
Γ(ω+1) 0 0 0 0 · · · 0

0 1!
Γ(ω+2) 0 0 0 · · · 0

0 0 2!
Γ(ω+3) 0 0 · · · 0

...
...

...
...

...
...

...

...
...

...
...

...
...

...

0 0 m!
Γ(ω+1+m)


.

Now, we expand X2(x) in terms of Bo(x)

X2(x) = HBo(x).

Let us express, xω+i by m+ 1 orders of the orthonormal Boubaker basis

xω+i ∼= hiBo(x),
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where, hi = [hi,0 hi,1 · · ·hi,m]T , hi.j =
∫ 1

0 x
ω+iBj(x) dx, H = [h0 h1 · · ·hm].

∴ IωBo(x) = Z̃D̃HBo(x) = LωBo(x), (12)

where the matrix Lω = Z̃D̃H is known as operational matrix of integration with respect to the
orthonormal Boubaker basis.

4.2 Operational matrix of the product

In this section, we find the operational matrix of the product of the basis functions, see Rostamy
et al. (2014). Now, consider the product of basis functions

cTBo(x)Bo(x)T ∼= Bo(x)T Ĉp,

where Ĉp is called the operational matrix of the product.
Computation of Ĉp:

CTBo(x)Bo(x)T = CTBo(x)X1(x)T Z̃T (13)

=

[
m∑
i=0

ciBoi(x),

m∑
i=0

xciBoi(x),

m∑
i=0

x2ciBoi(x), · · ·
m∑
i=0

xmciBoi(x)

]
Z̃T . (14)

Now, we write functions xkBoi(x) in terms of orthonormal Boubaker polynomial basis. Thus,
we define

vk,i =
[
v0
k,i, v

1
k,i, v

2
k,i · · · vmk,i

]T
,

xkBoi(x) =
m∑
i=0

vik,iBoi = vk,iBo(x),

where

vk,i =

∫ 1

0
xkBoi(x)Bo(x)dx (15)

=

[∫ 1

i=0
xkBoi(x)Bo0(x)dx,

∫ 1

i=0
xkBoi(x)Bo1(x)dx, · · ·

∫ 1

i=0
xkBoi(x)Bom(x)dx

]
. (16)

Now consider

m∑
i=0

cix
kBoi(x) =

m∑
i=0

ci

 m∑
j=0

vjk,iBoj (x)

 (17)

= Bo(x)T
[
v0
k,i, v

1
k,i, · · · vmk,i

]
C (18)

= Bo(x)TVkC (19)

= Bo(x)T C̄, (20)

where

C̄ = [V0C, V1C, · · ·VmC] ,

each Vi is a matrix of order (m+ 1)× (m+ 1)

CTBo(x)Bo(x)T = CTBo(x)X1(x)T Z̃T (21)

= Bo(x)T C̄Z̃T , (22)

where is Ĉp = C̄Z̃T is the required operational matrix of the product.
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For example: For m = 3

Bo =
(
Bo0(x) Bo1(x) Bo2(x) Bo3(x)

)
,

Z̃ =


1 0 0 0

−
√

3 2
√

3 0 0√
5 −6

√
5 6

√
5 0

−
√

7 12
√

7 −30
√

7 20
√

7

 ,

X1(x) =
(
1 x x2 x3

)

V0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 V1 =


0.5 0.2887 0 0

0.2887 0.5 0.2582 0
0 002582 0.5 0.2535
0 0.2582 0.5 0.2532



V2 =


0.3333 0.2887 0.0745 0.0000
0.2887 0.4000 0.2582 0.0655
0.0745 0.2582 0.3810 0.2535

0 0.0655 0.2535 0.5000

 V3 =


0.25 0.2598 0.1118 0.0189

0.2598 0.3500 0.2582 0.982
0.1118 0.2490 0.3214 0.2395
0.0189 0.0982 0.2395 0.3167

 .

Using induction in mathematics, we can now approximate y(x)k, k ∈ N as follows,

y(x) ∼= CTBo(x).

For k = 2

y(x)2 ∼= CTBo(x)Bo(x)TC ∼= BT
o (x)ĈpC,

where Ĉp is product’s operational matrix. Then for k = 3, we get

y(x)3 ∼= BT
o (x)Ĉp

2
C.

Using induction in mathematics, we can write,

y(x)k = BT
o (x)Ĉp

k−1
C.

5 Solution of non-linear multi-order fractional
differential equations

Equation 1 can be rewrite as,

Dω
xy(x) +

n∑
j=1

aj(x)Iω−βjDω
xy(x) +

k∑
i=1

bi(I
ωDωy(x))i + g(x) = 0, (23)

By considering Dωy(x) = u(x), we have

u(x) +
n∑
j=1

aj(x)Iω−βju(x) +

k∑
i=1

bi(I
ωu(x))i + g(x) = 0, (24)

In order to solve equation 1, we approximate u(x) = Dω
xy(x) in terms of orthonormal Boubaker

polynomials as,

Dω
xy(x) =

m∑
i=0

ciBoi(x) = CTBo(x) (25)
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(see Behroozifar et al. (2017)).

By applying Iω and Using 1, 2 we get ∴ y(x) = CT IωBo(x)

∼= CTLωBo(x) = CTωBo(x)

where Lω is the operational matrix of integration and denote CTω = CTLω and n− 1 < ω ≤ n,.
Now we approximate

Iω−βju(x) = CTLω−βjBo(x) (26)

and 0 < β1 < β2 < · · · < βn < ω. Consider the approximations for g(x) and aj(x) as follows,

g(x) ∼= GTBo(x), (27)

aj(x) ∼= ÃTj Bo(x), (28)

where the (m + 1) × 1 column vectors G and Ãj are known, whereas the (m + 1) × 1 column
vector C is unknown.

Substitute the approximations 25, 26, 27, 28 we get

CTBo(x) +
n∑
j=1

ÃTj Bo(x)CTLω−βjBo(x) +
k∑
i=1

bi(C
T
ωB0(x))i +GTBo(x) = 0 (29)

BT
0 (x)C +

n∑
j=1

ÃTj Bo(x)BT
0 (x)(Lω−βj )TC +

k∑
i=1

bi(B
T
0 (x)Ĉω

i−1
Cω) +GTBo(x) = 0 (30)

BT
0 (x)C +

n∑
j=1

BT
0 (x)Âj(L

ω−βj )TC +
k∑
i=1

bi((B
T
0 (x))Ĉω

i−1
Cω +BT

0 (x)G = 0 (31)

BT
0 (x)C +

n∑
j=1

BT
0 (x)Âj(L

ω−βj )TC +
k∑
i=1

bi(L
ω(BT

0 (x))Ĉω
i−1
Cω +BT

0 (x)G = 0 (32)

C +
n∑
j=1

Âj(L
ω−βj )TC +

k∑
i=1

bi(Ĉω)i−1(Lω)TC +G = 0. (33)

where Âj and Ĉω are the operational matrices of the product. Now by solving this non-linear
system we get value of C.

6 Numerical Results

Example 1. Consider the following example (Rostamy et al., 2014),

D2.5y(x) +D1.25y(x) + y(x) + y2(x)− y3(x) = 12

√
x

π
+

32x
7
4

7Γ(3/4)
+ x3 + x6 − x9, 0 ≤ x ≤ 1

with y′′(0) = 0, y′(0) = 0, y(0) = 0. The exact solution for this equation is y(x) = x3.
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Figure 1: Graphical representation of Exact and approximate solution for m=3 in Example 1

Figure 2: Plot of approximate solution for different value of ω in Example 1

Table 1: Absolute error in example 3 for m=3

x Our Method Exact Solution Absolute Error

0.1 0.001574 0.001000 1.574335e-04

0.2 0.008120 0.008000 1.202248e-04

0.3 0.027035 0.027000 3.533424e-05

0.4 0.063929 0.064000 7.059868e-05

0.5 0.124829 0.125000 1.709344e-04

0.6 0.215760 0.216000 2.390336e-04

0.7 0.342751 0.342999 2.482567e-04

0.8 0.511828 0.512000 1.719641e-04

0.9 0.729016 0.729000 1.648349e-05

1 1.000343 1.000000 3.437257e-04
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Example 2. Consider the following example (Yüzbaşı, 2013)

Dωy(x) + y2(x) = 1, 0 < α < 1

with initial conditions y′(0) = 0, y(0) = 0. Here this example is solved for ω = 1, 0.9, 0.75 taking
m = 3.

Figure 3: Plot of approximate solution for different value of ω in Example 2

Table 2: Comparison of obtained values of y(x) for Example 2

x Our Method Yüzbaşı (2013) Exact Absolute Error
m=3 m=12 ω = 1

0.1 0.12760935 0.13003745 0.09966799 0.02794136

0.2 0.23267670 0.23878913 0.19737532 0.03530138

0.3 0.32873788 0.33596217 0.29131261 0.03742527

0.4 0.41585460 0.42258308 0.37994896 0.03590563

0.5 0.49408859 0.49913519 0.46211716 0.03197143

0.6 0.56350156 0.56617156 0.53704957 0.02645199

0.7 0.62415525 0.62439622 0.60436778 0.01978747

0.8 0.67611136 0.67462699 0.66403678 0.01207459

0.9 0.71943163 0.71773475 0.71629788 0.00313376

1.0 0.75417777 0.75458880 0.76159416 0.00741639

Example 3. Consider the following example (Yüzbaşı, 2013),

Dωy(x) = 2y(x)− y2(x) + 1, 0 < ω ≤ 1

which satisfies y′(0) = 0, y(0) = 0.

Exact solution for ω = 1 is y = 1 +
√

2 tanh(
√

2x+ 1
2 log(

√
2−1√
2+1

)).

This example is solved for ω = 1, 0.9, 0.75 taking m = 3.
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Figure 4: Graphical representation of approximate solution for different value of ω in Example 3

Table 3: Comparison of obtained values of y(x) for Example 3

x Our method Yüzbaşı (2013) Exact solu Our method Yüzbaşı (2013)
ω = 0.90 ω = 0.90 ω = 1 ω = 1 ω = 1

m=3 m=15 m=3 m=30

0.1 0.15730219 0.15070989 0.11029519 0.11623599 0.11029519

0.2 0.34304015 0.31486440 0.24197679 0.26607605 0.24197679

0.3 0.54111482 0.49866532 0.39510484 0.43604079 0.39510484

0.4 0.74531828 0.69753897 0.56781216 0.62020057 0.56781216

0.5 0.94944256 0.90366760 0.75601439 0.81262579 0.75601439

0.6 1.14727972 1.10786162 0.95356621 1.00738682 0.95356621

0.7 1.33262182 1.30143258 1.15294896 1.19855403 1.15294896

0.8 1.49926091 1.47770301 1.34636365 1.38019780 1.34636365

0.9 1.64098905 1.63273978 1.52691131 1.54638852 1.52691131

1.0 1.75159828 1.76527518 1.6894498 1.69119657 1.68949839

7 Conclusion

In this work, a numerical technique has been presented for solving a class of non-linear multi-
order fractional differential equations by using orthonormal Boubaker polynomials. Some nu-
merical results are provided to demonstrate the effectiveness of this approach, accompanied by
comparisons to previous research using different polynomials. This comparative study used to
validate the efficiency and accuracy of the proposed methodology. The computational imple-
mentation is carried out using MATLAB software. In future, we can implement this technique
to solve coupled FDEs and fractional partial differential equations.
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